

Auto-steering SystemInstallation Guide

2011 Version 1.0

Gemini Navsoft Technologies Inc. Fredericton, NB, Canada

© 2011 Gemini Navsoft Technologies Inc. - All rights reserved.

Notes

 The following illustrations are meant to serve as a guide in providing the basic ideas necessary to build an effective GPS auto-steering system infrastructure. Each project site is different and therefore the GPS autosteering system setups will require modifications to suit the particular environment.

Base Station Server Infrastructure

Base Station Installation Hardware

Base Station Installation Wiring

Rover Client Infrastructure

Rover Client Hardware Installation

Rover Client Infrastructure - Hardware

Top of the center point (or the column farthest away from the cab) of the upper support beam

Top of the cab column

Rover Client Infrastructure (Upper Support Beam)

Rover Client Infrastructure (Upper Support Beam)

Rover Client Infrastructure (Upper Support Beam) Detail of GPS-Wiring

Bridge Infrastructure

* Notes:

- Range limits of Wifi are site dependent, as obstructions and signal interference will dictate range capabilities.
- It may be necessary to build the wireless network with multiple WiFi bridges.
- The height of the bridge antenna should be similar to the rover's antenna height.

Plan View of Generic Project Site Showing Wifi Infrastructure and Anticipated Range Limit

(As many wireless bridges as necessary are used to cover the project area)

Profile View of Omni Directional Antenna Beam Pattern

Network bridges should be kept ~ 50 ft away from nearest rover approach

Power Consumption

$$P = V \times I$$
 $P = I^2 \times R$ $P = \frac{V^2}{R}$

Device	Power/Current Consumption		
MOXA AWK-4121 Access Point, Bridge (Outdoor)	0.121 to 0.494 A @ 12 to 48 VDC		
MOXA AWK-3121 Access Point, Bridge (Indoor)	0.121 to 0.494 A @ 12 to 48 VDC		
MOXA EDS-205 Switch	0.12 A @ 24 V, 12 to 48 VDC		
Javad Delta G2T Receiver	(2.7 W) 4.5 to 35 VDC, 0.225 A @12 VDC		
Base Station Server PC	(700 W) 59 A @12 VDC		

UPS Requirements:

- Base Station: ~1 hour power supply for 60 A.
- Bridge: ~1 hour power supply for 0.121 A

UPSs from APC www.apc.com

Extendable life using external battery

APC Smart-UPS XL 2200VA 120V Tower/Rack Convertible

More Images

Ships With: CD with software, Smart UPS signalling RS-232 cable, USB cable, User Manual

	Description	Part Number	Price*	Estimated Order Total (USD)
~	APC Smart-UPS XL 2200VA 120V Tower/Rack Convertible	☐ SUA2200XL	\$1,150.00	\$1,150.00

Smart-UPS

APC Smart-UPS SC 420VA 120V

APC Smart-UPS, 260 Watts / 420 VA,Input 120V / Output 120V, Interface Port DB-9 RS-232

Includes: CD with software, Smart UPS signalling RS-232 cable, User Manual

Standard Lead Time: Usually in Stock

Email Technical Specifications

Printer Friendly

CAN Interface Loop-Back Test

Preliminary Site Test Set-Up

